
Introduction to Quantum Computation Sevag Gharibian
Summer 2020, Paderborn University

Lecture 11: Grover search and approximate counting

“The way to find a needle in a haystack is to sit down.”
— Beryl Markham.

”After that, work and hope. But never hope more than you work.”
— Also Beryl Markham.

Contents

1 Introduction 1

2 The unstructured search problem 1

3 Grover’s algorithm 2

4 Approximate counting 5
4.1 A brief history of counting . 5
4.2 Quantum approximate counting via Grover search . 6

4.2.1 Intuition . 6
4.2.2 Algorithm statement and analysis . 7

1 Introduction

Shor’s factoring algorithm and Grover’s search algorithm are like soccer teammates on different ends of the
field — the former, like a striker, is highly specialized to do one thing efficiently (i.e. score), while the latter,
akin to a sweeper, has the broad job of neutralizing all threats which slip past the rest of the team. Indeed,
Shor’s algorithm gives an exponential speedup for the specific problem of factoring, whereas Grover search
can be thrown at just about anything to yield a quadratic speedup.

Discovered by Lov Grover in 1996, Grover search is more specifically a quantum algorithm for solving the
following general problem: Given query access to an oracle containing N items, one of which is “marked”,
find the marked item. For example, the “oracle” could be implemented by a 3-SAT formula φ, indexed by
n-bit assignments x, and the aim is to find a satisfying assignment x (which would be considered “marked”).
Grover’s algorithm solves this problem with high probability using O(

√
N) queries to the database (which

turns out to be optimal for a quantum algorithm), whereas a classical algorithm would require Ω(N) queries
in the worst case. Thus, Grover search solves 3-SAT in O(

√
2n) time.

We begin in Section 2 by defining the unstructured search problem. Section 3 then gives Grover’s
algorithm, and Section 4 discusses a recent approach for bootstrapping Grover’s algorithm for approximate
counting.

2 The unstructured search problem

We begin by formalizing the unstructured search problem.

Definition 1 (Unstructured search (SEARCH)).

1

� Input: Query access to an oracle Uf for f : {0, 1}n 7→ {0, 1} an unknown Boolean function, meaning
the ability to compute (at unit cost) map

|x〉|y〉 7→ |x〉|y ⊕ f(x)〉 (1)

for any x, y ∈ {0, 1}n, and ⊕ the bit-wise XOR operation.

� Output: An index x ∈ {0, 1}n such that f(x) = 1, if one exists.

Note that no assumptions about Uf are made, other than the requirement that we have superposition query
access to the input/output behavior of f .

Exercise 2. SEARCH is often alternatively formulated as follows: The oracle Uf is replaced with an

unknown string z ∈ {0, 1}2
n

, such that each query to Uf is equivalent to accessing a single bit of z. The

output is to compute the OR function on string z, i.e. OR(z) =
∨2n

i=1 zi. Explain why this formulation of
SEARCH is equivalent to Definition 1.

Application to 3-SAT and the Exponential-Time Hypothesis. As alluded to in the introduction, we
may view a 3-SAT formula φ as a function f : {0, 1}n 7→ {0, 1}, i.e. which maps n-bit assignment x to φ(x).
Thus, finding a satisfying assignment to φ is a special case of SEARCH with f = φ. As we shall see shortly,
SEARCH can be solved in O(

√
2n) time quantumly, and this turns out to be optimal. Thus, quantumly one

can apply Grover search as a black box to 3-SAT to find a satisfying assignment (if one exists) in O(
√

2n)
time. Does this saying anything about the complexity of 3-SAT itself?

Maybe, maybe not. It is generally believed that 3-SAT cannot be solved in subexponential time, at least
on a classical computer. This is the premise of the Exponential-Time Hypothesis of Impagliazzo and Paturi
from 1999, stated as follows.

Claim 3 (Exponential-Time Hypothesis (ETH)). There exists a constant ε > 0 such that 3-SAT requires
time Ω(2εn) on a deterministic Turing machine.

While the runtime of Grover’s algorithm does not contradict ETH, if one does believe ETH, then it is perhaps
not too surprising that O(

√
2n) turns out to be the optimal worst-case runtime for a black-box quantum

search algorithm.
Is ETH true? Again, this is not clear, but assuming the truth of the ETH has led to matching runtime

lower bounds in an area known as fine-grained complexity. Roughly, the latter aims to pin down the precise
complexity of problems which are known to be in P (e.g. is the optimal worst-case runtime, say, O(n3) or

O(n2)?). For example, in the Orthogonal Vectors Problem (OV), given sets of vectors A,B ⊆ {0, 1}d with
|A| = |B| = n, one is asked whether there exist |v〉 ∈ A and |w〉 ∈ B such that 〈v|w〉 = 0?

Exercise 4. Show that OV can be solved in O(n2d) time.

It turns out that, assuming a stronger variant of ETH known as the Strong Exponential Time Hypothesis,
the naive polynomial runtime of Exercise 4 is the best possible. The interested reader is referred to the
accessible survey of Bringmann [Bri19] for details.

3 Grover’s algorithm

Define N := 2n. We now show how to solve SEARCH in O(
√
N) time on a quantum computer. For clarity,

recall that typically when one discusses problems with black-box access to an oracle (as in SEARCH), the
relevant cost model is query complexity (i.e. each query has unit cost, and this is the only cost we care
about). This is also the cost model we adopt here. We begin by revisiting our old friend, the phase kickback
trick. Viewing this trick geometrically, in particular, will kickstart the development of the remainder of
Grover’s algorithm.

2

|A〉

|B〉θ
θ

|ψ〉

|ψ′〉

|A〉

|B〉θ
θ

|ψ〉

|ψ′〉

2θ

|ψ′′〉

|A〉

|B〉θ

|ψ〉
ηη

|ψK〉

Figure 1: (Left) A reflection of |ψ〉 about |B〉 to |ψ′〉. (Middle) A reflection of |ψ′〉 about |ψ〉. For clarity,
the angle 2θ is between |ψ′′〉 and |ψ′〉. (Right) The final state |ψK〉 = (RψRB)K |ψ〉 after running the Grover
iterate K times.

Phase kickback. The starting point is the phase kickback trick used in conjunction with oracle Uf . Recall
this means using mapping |x〉|−〉 7→ (−1)f(x)|x〉|−〉, or for brevity,

|x〉 7→ (−1)f(x)|x〉. (2)

It will be remarkably helpful to visualize phase kickback geometrically in the case of SEARCH. This is
done, roughly, by considering superpositions over marked and unmarked items (for clarity, a “marked”
(“unmarked”) item x satisfies f(x) = 1 (f(x) = 0)). For this, let A,B ⊆ {0, 1}n be the sets of marked and
unmarked items, respectively, and define

|A〉 :=
1√
|A|

∑
x∈A
|x〉 and |B〉 :=

1√
|B|

∑
x∈B
|x〉. (3)

Thus, |A〉 (|B〉) is an equal superposition over all marked (unmarked) items. The geometric interpretation
follows from the next exercise.

Exercise 5. Show that Uf |A〉 = −|A〉 and Uf |B〉 = |B〉.

In words, restricted to the 2D space defined by Span(|A〉, |B〉), Uf acts as a reflection about |B〉, as depicted
in Figure 5. And this is no coincidence — digging more deeply into this view will lead us directly to Grover’s
algorithm (though, for clarity, this geometric view was only discovered after Grover’s original work). To see
this, let us remind ourselves of the second tool we have at our disposal — preparing some initial start state
|ψ〉. Ideally, this state |ψ〉 should also lie in the span of |A〉 and |B〉, so that it “fits” into the 2D picture of
Figure 5.

Exercise 6. Take a moment to guess what might be a “reasonable” choice of |ψ〉, given our current state
of knowledge. What do we know about the location of the marked items? What choice of |ψ〉 might lie in
the span of |A〉 and |B〉?

The start state, |ψ〉. Since a priori we have no reason to believe any particular item x is marked, a naive
choice of start state is

|ψ〉 =
1√
N

∑
x∈{0,1}n

|x〉 =

√
|A|
N
|A〉+

√
1− |A|

N
|B〉. (4)

3

Exercise 7. Prove the second equality above.

In other words, |ψ〉 ∈ Span(|A〉, |B〉), as desired, and we may depict it as in Figure 5 (Middle). The angle θ
therein is given in the following exercise.

Exercise 8. Show that for start state |ψ〉 in Equation (4), cos θ =
√

1− |A|N .

The goal. To guide the rest of the algorithm, we now pause and step back to restate our goal in the 2D
picture of Figure 5. Given the ability to prepare |ψ〉, we wish to rotate |ψ〉 counter-clockwise up to to |A〉,
and subsequently measure in the standard basis, thus obtaining some marked item x ∈ A. Since this is just a
rotation map, it is certainly possible, in that there exists a 2n × 2n unitary matrix performing this rotation.
The question is: Can this mapping be computed using poly(n) queries to Uf (and ideally, poly(n) auxiliary
gates)?

Two reflections make a rotation. As the saying goes, beggars can’t be choosers, and indeed to attain
our goal, we must make do with what few tools the generality of SEARCH affords us: We can reflect
about |B〉, and we can prepare |ψ〉. The key observation is that since we can efficiently prepare |ψ〉, i.e.
|ψ〉 = H⊗n|0n〉, we can also reflect about |ψ〉.

Exercise 9. In Lecture 9, we saw that for |ψ〉, a reflection about |ψ〉 is achieved by unitary Uψ = 2|ψ〉〈ψ|−I.
Show how to implement Uψ for our choice of |ψ〉 from Equation (4). (Hint: Begin by showing how to reflect
about |0n〉, i.e. by implementing U0n = 2|0n〉〈0n| − I.))

Geometrically, this means we can map |ψ′〉 to |ψ′′〉 in Figure 5. In other words, by first reflecting about |B〉,
and then about |ψ〉, we can effect a counter-clockwise rotation of 2θ in Figure 5. Magic! Formally, we shall
repeatedly apply the pair of reflections (often dubbed the “Grover iterate”)

(2|ψ〉〈ψ| − I)(2|B〉〈B| − I) =: RψRB , (5)

where RB is effected by querying the oracle Uf , and Rψ by undoing the preparation procedure for |ψ〉,
reflecting about |0n〉, and then re-doing the preparation for |ψ〉 (as per Exercise 9).

The number of iterations required. We can now state Grover’s algorithm as follows:

1. Prepare |ψ〉 = H⊗n|0n〉.

2. Apply the Grover iterate, RψRB , K times.

3. Measure in the standard basis to obtain string x ∈ {0, 1}n.

If there are no solutions, i.e. M = 0, this procedure always outputs x satisfying f(x) = 0, as expected. If
M > 0, on the other hand, the question is what to set K, the number of loop iterations, to? Note that it
suffices for the algorithm to succeed with any fixed constant success probability p, as then independently
repeating the algorithm drives down the overall error probability exponentially. To simplify the analysis, set
p = 1/2. Without loss of generality, we may assume |A| /N ≤ 1/2 (as otherwise classically choosing uniformly
random inputs to Uf yields success probability at least 1/2). By Exercise 9, we hence have θ ≤ π/4.

Exercise 10. Show that for Step 3 of Grover’s algorithm to output x ∈ {0, 1}n satisfying f(x) = 1
with probability at least 1/2, it suffices in Figure 5 (Right) that |ψK〉 makes angle at most η ≤ π/4 with
|A〉. (Hint: Recall your high school formula that the overlap between real vectors |v〉 and |w〉 equals
〈v|w〉 = ‖ |v〉 ‖2 ‖ |w〉 ‖2 cos η for η the angle between |v〉 and |w〉.)

Thus, by Exercise 8, we start with |ψ〉 at θ = arccos(
√

(1− |A|)/N) ≤ π/4, and we wish to end up at |ψK〉
with η ∈ [−π/4, π/4].

4

Exercise 11. Given that |ψ〉 starts at angle θ ≤ π/4, do we ever need to wrap around the circle (when
applying the Grover iterate) in order to land in range η ∈ [−π/4, π/4]?

Exercise 12. Using your answer from the previous exercise, show that setting

K =

⌈
1

2θ

(
arccos

√
|A|
N
− π

4

)⌉
(6)

suffices to succeed with probability at least 1/2, assuming |A| > 0.

Exercise 13. Show that sin θ =
√
|A| /N and that θ ≥ sin θ for |θ| ≤ 1. Using these facts, show that

K ≤

⌈
π

8

√
N

|A|

⌉
∈ O

(√
N

|A|

)
(7)

queries to Uf suffice to find a marked item with probability at least 1/2.

Exercise 14. How many auxiliary gates (i.e. gates other than queries to Uf) does Grover’s algorithm use?

In closing, given query access to an oracle Uf for which |A| out of N = |A| + |B| items are marked, a

marked item can be found quantumly using O(
√
|A| /N) queries. There is a slight catch, however — the

exact number of queries required, as given by Equation (6), requires knowledge of |A|. Luckily, it turns out
that not only do quantum algorithms allow us to check if |A| > 0, but additionally to estimate |A| itself to
within multiplicative error. This is known as quantum approximate counting, covered next.

4 Approximate counting

In Section 2, we defined the input to SEARCH as an oracle Uf , and the output was to find a marked item
x, i.e. satisfying f(x) = 1. This can be generalized to the much more difficult question: Can we count the
number of marked items?

4.1 A brief history of counting

Recall that in SEARCH we place no requirements on the complexity of implementing Uf , making SEARCH
extremely general. However, here on Earth, one typically requires Uf to have an efficient implementation.
For example, if f : {0, 1}n 7→ {0, 1} is efficiently implementable by a deterministic Turing machine Mf , then
assuming in SEARCH we are also given a description of Mf (as opposed to just query access), SEARCH
is NP-complete. (For example, as done in Section 2, Uf could evaluate a 3-SAT formula.) If we now ask
the more general question “how many x ∈ {0, 1}n satisfy f(x) = 1?”, we obtain precisely the complexity
class #P, which is believed much harder than NP. For example, while NP is (by definition) the first level of
the Polynomial-Time Hierarchy (PH), Toda’s theorem tells us P#P contains all of PH. Thus, the ability to
count solutions allows us to solve NP and a whole lot more.

Given the importance of #P to complexity theory, it is worth taking a moment to understand what
quantum approximate counting shall buy us, in comparison to what is possible classically (again, assuming
f is efficiently implementable by a Turing machine). Let M denote the number of x ∈ {0, 1}n satisfying
f(x) = 1. The classic result for approximate counting is Stockmeyer’s algorithm, which shows how to
approximate M within a multiplicative factor of 2 in randomized polynomial time, assuming one has access
to an NP oracle. (This factor of 2 can then easily be boosted to 1+(1/p(|x|)) for any desired fixed polynomial
p.) In contrast, in this section we shall make a tradeoff — by adding quantum computation to the picture,
we no longer need an NP oracle, but now the runtime is worst-case exponential: O(

√
M/N) to be precise

5

(assuming we want a constant probability of success). And this tradeoff in some sense is necessary — in
the worst case, approximating the Permanent of a matrix (a classic #P-complete problem dating back to
Valiant’s original 1979 paper on #P) within a constant multiplicative error is still #P-hard [AA11]. And it
is nowadays generally believed quantum computers cannot efficiently solve NP-hard problems, never mind
#P-hard problems.

4.2 Quantum approximate counting via Grover search

Returning to the setting where Uf is a black-box about which we make no assumptions, there are nowa-
days multiple approaches for quantumly approximately counting M := |{x ∈ {0, 1} | f(x) = 1}|. A classic
approach is to run QPE on the Grover iterate (a theme which reappears in more general quantum walk
frameworks), as it turns out the eigenvalues of the iterate encode M . However, here we shall review a
conceptually simpler, more recent approach due to Aaronson and Rall [AR20], which does away with the
QPE machinery and whittles the solution down to requiring just a single tool — Grover search itself.

4.2.1 Intuition

The basic idea. Let p = M/N , i.e. the fraction of satisfying assignments. Naively, there is a simple
classical algorithm for estimating p — simply pick x uniformly at random, and evaluate f(x). By definition,
this succeeds with probability p, and so 1/p trials are expected before a satisfying assignment is found.

Exercise 15. Take a moment to Google for “geometric distribution”. Show how to model the sampling
experiment above as a geometric distribution. What is the expected value and variance for this distribution?
What is the probability that the number of trials needed to see a success deviates significantly from 1/p?
(Hint: Use Chebyshev’s inequality, which unlike Markov’s inequality, takes the variance into account.)

Of course, in the worst case, 1/p ∈ O(N), and by now we are spoiled with getting faster O(
√
N) runtimes

via Grover search. Thus, roughly, the quantum algorithm we discuss will carefully mimic (a refinement of)
the idea above in conjunction with Grover search. In the remainder of this section, we state the algorithm,
and sketch its proof of correctness. The interested reader is referred to [AR20] for full details.

Quantizing the basic idea. Recall from Exercise 13 that in Grover search, the angle made by start state
|ψ〉 with |B〉 is θ = arcsin(

√
|A| /N), or in the terminology of this section, θ = arcsin(

√
M/N). One can

generalize the analysis of Section 3 to show that by making O(r) queries to Uf , Grover search finds a marked
item with probability p = sin2(rθ). The smaller M is, the smaller θ is, and hence the larger r needs to be to
make p large, as expected.

Exercise 16. More accurately, denoting the Grover iterate as G, we have

G(r−1)/2 =
sin(rθ)√

M

∑
x∈A
|x〉+

cos(rθ)√
N −M

∑
x∈B
|x〉. (8)

Confirm that the probability of extracting a marked item after O(r) uses of G is indeed p.

The beauty of [AR20] is now that we can forget about the word “quantum”, and simply think of p as a
probability arising from some abstract sampling experiment E with parameter r (we henceforth write E(r)
where appropriate). The question is: Given the ability to choose r in this experiment E(r), how many runs
of E do we need to estimate p (thus allowing us to extract θ, which encodes the number of solutions M)?

The high-level outline for achieving this with a quadratic speedup consists of two steps:

1. (Rough estimate) Repeat E(r) using exponentially increasing values of r until “sufficiently many”
marked items are found. This gives a rough estimate of K− ≤ θ ≤ K+.

6

2. (Finetuning the estimate) Iteratively cut down the interval [K−,K+] to zoom in on θ.

The second step, in particular, will require a careful choice of r each time E(r) is run to avoid cutting the
candidate interval [K−,K+] too much, which in particular is a danger if θ ≈ K− or θ ≈ K+. This shall rely
on the Steady Hands Lemma 20, to be stated shortly.

4.2.2 Algorithm statement and analysis

The main theorem of [AR20] is the following.

Theorem 17. Fix any desired ε, δ > 0. Given oracle access to Uf (as in SEARCH), there exists a quantum
algorithm which:

1. outputs M̃ satisfying (1− ε)M < M̃ < (1 + ε)M ,

2. succeeds with probability at least 1− δ,

3. uses O
(√

N
M

1
ε

1
log δ

)
queries to Uf ,

4. uses O(logN) qubits/space.

Statement of the algorithm. The algorithm is stated below. It assumes θ ≤ π/1000, which is without
loss of generality since we can always “extend” Uf with dummy indices x which always lead to f(x) = 0. For
now, we use abstract names ci to denote parameters in the algorithm, so as to avoid excess detail obscuring
the main pedagogical ideas.

1. Set t = 0.

2. (Rough estimate) Loop:

(a) Let r be be the largest odd integer less than or equal to ct1 for c1 > 1.

(b) Run E(r) c2 times, recording each of the c2 items produced.

(c) If at least 1/3 of the recorded items x are marked, let t∗ = t and exit the loop.

(d) Set t = t+ 1.

3. Set θmin := 5
8

(
1
c1

)t∗+1

and θmax := 5
8

(
1
c1

)t∗−1
, where recall c1 > 1.

4. Set t = 0.

5. (Finetuning the estimate) Loop:

(a) Use the Steady Hands Lemma to choose r.

(b) Run E(r) c3 times, recording each of the c3 items produced.

(c) If at least half the items recorded were marked, increase the lower bound via

θmin =
θmax

∆
, (9)

where ∆ := 0.1 + 0.9(θmax/θmin). Otherwise, decrease the upper bound via

θmax = ∆θmin. (10)

(d) If θmax ≤ (1 + ε
5)θmin, exit the loop.

(e) Set t = t+ 1.

6. Return M̃ := N sin2(θmax).

Formally, setting parameters c1 = 12/11, c2 = 105 ln(120/δ), c3 = 103 ln(100(0.9)t/(δε)) suffices for the proof
of Theorem 17.

7

Analysis sketch. We now briefly sketch the proof of Theorem 17.

Checkpoint 1: After first loop terminates. The claim here, as suggested by line 3 of the algorithm, is that
with probability at least 1− (δ/2),

5

8

(
1

c1

)t∗+1

=
5

8

(
11

12

)t∗+1

≤ θ ≤ 5

8

(
11

12

)t∗−1
=

5

8

(
1

c1

)t∗−1
. (11)

The claim is seen by focusing on a “threshold” t0 for t, around which the probability of seeing at least 1/3
of the recorded items marked in Step 2(c) jumps from “insignificant” to “extremely likely”. Formally, set t0
as the largest integer satisfying (

12

11

)t0
θ ≤ 5

8
. (12)

Then, one can show that if t < t0, the probability p of E(r) returning a marked item is at most

p = sin2(rθ) ≤ 0.33

(
12

11

)2(1+t−t0)

<
1

3
. (13)

Thus, over m trials, when t < t0 we expect to see strictly less than 1/3 of the sampled items being marked.
Formally, one applies the Chernoff-Hoeffding bound to conclude that since the number of trials is c2 =
105 ln(120/δ), the probability of seeing at least 1/3 of the samples being marked is “small”, i.e. at most δ/4.

Exercise 18. The Hoeffding bound states the following. Let X1 through Xn be independent random
variables, each satisfying 0 ≤ Xi ≤ 1, whose arithmetic mean is X = (X1 + · · · + Xn)/n. Then, the bound
states

Pr
(∣∣X − E[X]

∣∣ ≥ t) ≤ 2e−2nt
2

. (14)

In words, we converge exponentially quickly to the true expectation of X by drawing many samples and
taking their arithmetic mean. Use the Chernoff bound to show that if a biased coin flip lands HEADS with
probability p−ε for fixed ε > 0, then it is highly unlikely over n coin flips to have at least pn HEADS instances.

Conversely, as soon as t is “large enough” (formally, t = t0 +1 suffices), one can show p > 0.336 > 1/3, so
now a Chernoff bound suffices to conclude that, with probability at least 1− (δ/4), over 1/3 of the samples
will be marked.

Checkpoint 2: After second loop terminates. By line 5(d), we are guaranteed that if we reach line 6, then

θmax

θmin
≤ 1 +

ε

5
, (15)

implying any θ̃ ∈ [θmin, θmax] satisfies (
1− ε

5

)
θ ≤ θ̃ ≤

(
1 +

ε

5

)
θ. (16)

Exercise 19. Observing that line 6 of the algorithm chooses θ̃ = θmax, show that M̃ satisfies the first
claim of Theorem 17.

Roughly, to show that we indeed reach line 6 eventually, observe that after line 3, we have ∆ = 0.1 +
0.9(θmax/θmin) ≈ 0.1 + 0.9(1.19) > 1. Thus, intuitively each run of lines 5c and 5d will eliminate a constant
fraction of the search space, implying line 5(d) will eventually cause us to exit the second loop, as desired.
The only catch is that, each time we remove such a fraction of the search space, we must ensure we do not

8

accidentally “skip” θ, i.e. we must always maintain θ ∈ [θmin, θmax]. This is ensured by the following lemma,
which shows how to pick r in line 5(a) to avoid the situation θ 6∈ [θmin, θmax]. Note that the remaining
probability of failure of δ/2 in the algorithm arises by applying the union bound over all uses of the following
lemma.

Lemma 20 (Steady Hands Lemma). Assume 0 < θmin ≤ θ ≤ θmax ≤ π/1000, and that θmax/θmin ≤ 5/4.
Then, there exists an odd integer r such that, running E(r) at least 1000 ln(1/δ) times and updating θmin

and θmax according to the following rules preserves θmin ≤ θ ≤ θmax with probability at least 1− δ:

1. If the majority of samples are marked, update θmin = θmax/∆.

2. If the majority of samples are unmarked, update θmax = ∆θmin.

Further, r ∈ Θ(1/θ), where recall r controls the number of applications of the Grover iterate in E(r).

We will not prove this lemma explicitly, but the rough idea is to select1 r satisfying

rθmin ≈
π

2

(
θmin

θmax − θmin

)
and rθmax ≈ rθmin +

π

2
. (17)

In words, this not only means r iterations of the Grover iterate “separate” the starting angles θmin and
θmax by an additive angle of approximately π/2 radians, but that one can additionally show this choice of
r aligns rθmin with “approximately” |B〉 (unmarked items) and rθmax with |A〉 (marked items) (recall |A〉
and |B〉 have an angle of π/2 radians). Since before we apply Lemma 20, we assume as a precondition that
θmin ≤ θ ≤ θmax, this means that if θ ≈ θmin (θ ≈ θmax), after r iterations we have rθ ≈ rθmin ≈ 0 modulo 2π
(rθ ≈ rθmax ≈ π/2 modulo 2π), so we are likely to sample an unmarked (marked) element. Thus, repeating
E(r) sufficiently many times and applying a Chernoff bound will ensure that if θ is close to (say) threshold
θmin, then Lemma 20 is smart enough to recognize this and to instead update threshold θmax.

Formally, if θmin ≤ θ ≤ θmax/∆ (Case 1 of Lemma 20), one can show E(r) outputs a marked item with
probability

p = sin2(rθ) ≤ 0.47 <
1

2
. (18)

Conversely, if ∆θmin ≤ θ ≤ θmax (Case 2 of Lemma 20), one can show E(r) outputs a marked item with
probability

p = sin2(rθ) ≥ 0.6 >
1

2
. (19)

Thus, by the Chernoff-Hoeffding bound, cases 1 and 2 of Lemma 20 will correctly update θmax or θmin,
respectively, with high probability.

Query complexity. Finally, let us sketch the number of queries to Uf each stage of the algorithm requires.

Exercise 21. Recall the first loop is run at most t0 + 1 times, for t0 defined in Equation (12). Recalling
that each run of the loops uses 105 ln(120/δ) calls to Uf , show that the total number of queries required by
the first loop scales as

O

(
1

θ
log

1

δ

)
∈ O

(√
N

M
log

1

δ

)
. (20)

A somewhat similar argument shows that the second loop requires

O

(
1

θε
log

1

δ

)
∈ O

(√
N

M

1

ε
log

1

δ

)
(21)

queries, which dominates the first loop’s runtime, and hence leads to the claimed overall query cost of
Theorem 17.

1Formally, one selects r as the closest integer to 2πk/θmin, where k is the closest integer to θmin/(4(θmax − θmin)).

9

References

[AA11] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In Forty-third
Annual ACM Symposium on Theory of Computing, STOC ’11, pages 333–342, 2011.

[AR20] Scott Aaronson and Patrick Rall. Quantum Approximate Counting, Simplified, pages 24–32. 2020.

[Bri19] Karl Bringmann. Fine-Grained Complexity Theory (Tutorial). In Rolf Niedermeier and Christophe
Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science (STACS
2019), volume 126 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:7,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

10

	Introduction
	The unstructured search problem
	Grover's algorithm
	Approximate counting
	A brief history of counting
	Quantum approximate counting via Grover search
	Intuition
	Algorithm statement and analysis

